MenAfriVac: an example of efficient technology transfer to develop a needed vaccine

Suresh Jadhav, Serum Institute of India, LTD and Jean-Marie Preaud, PATH

International Vaccine Technology Workshop

Hyderabad, India, September 18, 2010

Eliminating epidemic meningitis as a public health problem in sub-Saharan Africa

MVP IS A PARTNERSHIP BETWEEN WHO AND PATH

Epidemic meningitis in Africa

Meningitis belt: extends from Ethiopia to Senegal: Sudan, Ethiopia, Chad, Niger, Northern Nigeria, Burkina Faso, Mali are considered hyper-endemic

1905: first documented epidemic, Northern Nigeria

1919-1924: second cycle with over 45,000 deaths in Northern Nigeria

1935-1937: third cycle: Nigeria 6456 deaths

1951-60: 340,000 cases with

53,000 deaths

1996-1997: 300,000 cases

with 30,000 deaths

The Meningitis Vaccine Project: an example of "push" funding to develop a new vaccine

- Created in June 2001 by a grant from the Bill & Melinda Gates
 Foundation as a 10 year partnership between WHO and PATH
- Goal: to eliminate epidemic meningitis as a public health problem in sub-Saharan Africa through the development, testing, licensure, and widespread use of *conjugate* meningococcal vaccines
- Guiding Principles
- The project is about public health impact and not simply making vaccines available
- Decisions about candidate vaccines linked to introduction strategies and likely financial constraints

Development of MVP - History

- Renewed interest in conjugate vaccines at WHO after the 1996-1997 epidemic
- EVA (Epidemic Vaccines for Africa) project established at WHO (Dr. Luis Jodar)
- In-depth discussions with vaccine manufacturers in 1999 and 2000; costing model for conjugate vaccines developed; evolution of a collaboration between WHO and CVP/PATH

Choice of Men A Conjugate Vaccine

- After extensive discussions with WHO, advisory groups and African public health officials a decision was made to develop a monovalent meningococcal A vaccine because:
- Continued Men A epidemics in the 1990s
- Field tests in Niger and The Gambia with conjugate vaccines developed by Pharma
 - Development stopped in late 1990s
 - Products not deemed commercially viable
 - Opportunity costs too high
- No Men A conjugate vaccine available as of 2001
 - Advantage of simplicity, less risk and solid public health impact

Discussions with African Public Health Officials & WHO/AFRO, Fall 01-Spring 02

- Cost of vaccine was the most important limiting factor to the introduction of new vaccines
- Meningitis belt countries are the poorest in the world
- Success of MVP (widespread use of a conjugate meningococcal vaccine in mass campaigns) would not be possible unless vaccines were priced less than \$US 0.50 per dose

MenA conjugate vaccine development

- Could not reach agreement with major vaccine manufacturers; negotiations ended in March 02
- MVP decided to pursue development of a Men A conjugate vaccine using a different strategy:
- Creation of a consortium to do the following:
 - Identify sources of raw materials (Men A PS and tetanus toxoid)
 - Identify a conjugation method
 - Find a vaccine manufacturer willing to accept technology transfer (fermentation and conjugation) and make the conjugate vaccine at a price less than \$US 0.50 per dose

Men A Conjugate Vaccine Development

- By mid 2002 MVP began working with Serum Institute of India as a key member of a consortium that was created and managed by MVP to develop a new and affordable Men A conjugate vaccine.
- Over the next two years the consortium
 - identified raw materials (Men A PS and tetanus toxoid)
 - licensed a conjugation method
 - transferred fermentation/purification and conjugation technology to SIIL

Licensure, Prequalification, and Introduction of MenAfriVac™

- MenAfriVac[™] licensed by Drugs Controller General of India in December 2009
- WHO prequalified in June 2010
- First introduction in Burkina Faso, Mali, and Niger in September to December 2010

Management of intellectual property

- Licensing agreement for the intellectual property developed with NIH (acting on behalf of FDA)
- Territory defined as countries with lower to upper middle income economies as defined by the WB
- Patent costs borne by MVP

Access of Men A conjugate vaccine to meningitis belt countries

	A/C/Y/W*	Α		(proposed)	
MenA	2005	2010	N/A	2010	0
HiB	1990	2001	11	2008	7 yrs
HebB	1982	1994	12	2001	7 yrs
Vaccine	Year available in USA	Year first introduced in dev. country	Lag period: time from USA to introduction in develop. country (yrs)	Scale up: Number of years to 25 million doses used in develop. countries	Lag period for scale up: years from develop. country intro to 25 million doses

^{*}age indication not appropriate for Africa

Characteristics of MenA vaccine development

- North/South transfer of technology not currently available
- South/South transfer of a vaccine product at an affordable price
- Capacity building for Indian and African clinical investigators
- Model for other vaccines/products

The MVP Men A vaccine development model

A PS produced by SynCo BioPartners, Amsterdam for initial development then Ps transferred to Serum Raw material Institute of India Conjugation method developed at CBER/FDA, Bethesda, USA, transferred **MVP** Serum Institute of India and scaled-up at Serum process development **Core Team** Institute of India and manufacturing Raw Material (TT) Conjugation **Process Dev** Lyophylization and method stabilization tech Manufacturing transfer from Aerial in France to Target price US\$ <0.50/dose **Serum Institute**

Product development

- SynCo BioPartners in Amsterdam agreed to provide the Men A Polysaccharide for the project
- Conjugation method developed at CBER/FDA, Bethesda, USA and transferred to Serum Institute of India, Ltd
- Serum Institute of India Ltd to furnish tetanus toxoid and manufacture vaccin
- Formulation and lyophilization of the MenA conjugate vaccine developed at Aérial, Illkirch, France and transferred to SIIL.

Technology transfer from Synco Biopartners to Serum Institute of India Limited:

Production of purified MenA polysaccharide

Technology transfer from Synco to SIIL (1):

Fermentation and purification of Men A

Purpose

- 18 October 2004 12 November at Synco BioPartners, Amsterdam
- Training of three SIIL scientists: Mr S. Purandare, Mr J. Joshi, and Dr S. Beri
- Trainer: Mr P. Dissel

Scope

- Training was done by running two fermentation batches, each of 7 literscale followed by two purification batches at pilot scale
- Discussions on documentation: process flow chart, in-process controls, batch protocol records
- Daily wrap-up meetings to answer questions from trainees. Minutes are recorded
- SOPs, raw materials specifications, and equipment references for the production process at pilot scale were furnished
- Final wrap-up meeting on November 12th to conclude the success of the technology transfer. Participants: SIIL (Dr Kapre, Dr S. Beri, Mr J. Joshi), SynCo (Mr Paul Dissel, Mr Edwin van den Bos), and PATH (Dr M. LaForce, Mr. JM Préaud)

Technology transfer from Synco to SIIL(2): Preparation of cell banks

- Reception of M1027 strain from Dr Carl Frasch (CBER)
- Preparation of Men A non-GMP working cell bank for development purpose
- Preparation of GMP master cell bank (MCB) and working cell bank (WCB) for production of clinical material
 - Synco with Cobra carried out the preparation of the GMP MenA MCB and WCB
 - Synco carried out the stability studies of the MenA MCB and WCB till 24 months. Then, SIIL continued stability studies.
 - Synco organized the shipment of MCB and WCB from Amsterdam to SIIL

Technology transfer from Synco to SIIL(3): Preparation of master cell bank and working cell bank

- Operations under Good
 Manufacturing Practice (GMP)
 - Firt step of fermentation in glass flaskes (erlen meyer)
 - at controled room temperature
 - Lyophilization in ampoules (100 million bacteria per 1-ml ampoule)
 - Testing: characterization, purity, titer, stability
 - Storage at 70° C

Technology transfer from Synco to SIIL(4): Fermentation of MenA polysaccharide

- Determination of critical parameters: pH, temperature, agitation, media volume...
- In process controls: viability, purity
- Design of equipment
- Documentation (batch protocol records):
 - AP-BPR-MEA-2850: Preparation of Men Inocumum for MEA production
 - AP-BPR-MEA-2900: Production of Men A at 5L scale, Fermentation

Technology transfer from Synco to SIIL (5): Extraction and purification of MenA polysaccharide

- Determination of critical parameters
- Design of equipment
- In process controls
- Documentation (batch protocol records):
 - AP-BPR-MEA-2950: Production of Men A at 10L scale, Primary recovery
 - AP-BPR-MEA-3000: Extraction of Men A polysaccharide out of CTAB wet paste
 - AP-BPR-MEA-3005: Concentration and precipitation of Men A polysaccharide
 - AP-BPR-MEA-3010: Dissolving, diafiltration precipitation and drying of polysaccharide

Technology transfer from Synco to SIIL (6): Summary

- Technology transfer of preparation of MCB, WCB, fermentation and purification have been successful at pilot scale
- Consequently, scale up of technologies has been performed at industrial scale at SIIL
- Biocomparability protocols have shown that the material produced by SIIL is qualitatively comparable to the material produced by Synco
- Consistency lots have been prepared and used for clinical trials

Technology transfer from CBER to Serum Institute of India Limited:

Preparation of MenA polysaccharide - tetanus toxoid conjugate

Technology transfer from CBER to SIIL (1):

Preparation of PsA-TT conjugate - The Lee/Frasch method

Tetanus toxoid + Hydrazine
$$\rightarrow$$
TT-NH2 \rightarrow Conjugate Polysaccharide + NaIO₄ \rightarrow Activated PS

Technology transfer from CBER to SIIL (2): Conjugation method

- December 2003 CBER
- Under the supervision of Dr Carl Frasch and Dr Robert Lee
- Two SIIL scientists worked at CBER for three weeks
 - Learning conjugation method
 - Duplicating process at lab scale
 - Receiving SOPs for conjugation process and analytic methods

Technology transfer from CBER to SIIL (3) Conjugation method

December 16th, 2003, at CBER:

first conjugation lesson

Objective

Transfer the conjugation technology (production process and analytical methods) from CBER to SII

- Methodology
 - Presentation of SOPs
 - Demonstration by R. Lee
 - Hands on by Indian team
 - Daily follow up: Q&A with C. Frasch & R. Lee

Technology transfer from CBER to SIIL (4)

List of Standard Operational Procedures provided to SIIL

Production process

- SOP00001: Activation of tetanus toxoid
- SOP00002: Activation of meningococcal group A polysaccharide
- SOP00003: Conjugation of activated Men A PS to activated TT

Analytical methods

Characterization of activated tetanus toxoid

- SOP00004: Lowry assay for quantification of protein
- SOP00006: TNBS assay for hydrazine concent Determination of degree of activation for TTH

Characterization of activated Men A PS

- SOP00007: Modified resorcinol assay for quantification of Men A PS
- SOP00008: Phosphorus assay for quantification of Men A PS
- SOP00009: Determination of degree of activation for Men A PS
- SOP00010: Preparation of activated/reduced Men A PS (for analysis)

Characterization of TT-MAPS conjugate product

- SOP00004: Lowry assay for quantification of protein
- SOP00005: Protein quantification by measurement of absorbance at 280 nm
- SOP00007: Modified resorcinol assay for quantification of MAPS
- SOP00008: Phosphorus assay for quantification of MAPS Determination of ratio [protein]/[MAPS]

Technology transfer from CBER to SIIL (5) Conclusions

- Technology transfer
 - Production process and analytical methods transfered to SIIL team after a three-week intensive training at CBER (Bethesda), including the preparation of six lab-scale batches (10mg and 25mg of PsA)
 - The technology of conjugation is well controlled by Indian scientists
- Next step: Implementation of the method at SIIL (Pune)

Technology transfer from CBER to SIIL (6)

The Lee/Frasch conjugation method

Structure of CBER/SII Men A Conjugate Vaccine

January to March 2004: at SIIL – Pune

- Implementation of the Lee/Frasch method
- Scale up to pilot scale (100 mg)
- Technical support from CBER scientists who visited SIIL (February 2004)
- Three lots of Men A conjugate sent from SIIL to NIBSC for testing (March 20, 2004)
- Murine immunologic studies done at NIBSC and SIIL
- Data presented at Expert Panel Meeting in June 2004
- Strong scientific support from experts: Dr C. Ceccarini, Dr J. Petre, Dr N. Ravenscroft

Technology transfer from CBER to SIIL (7) Summary

- Technology transfer of Lee/Frasch conjugation method has been transferred successfully to SIIL at lab scale (10 to 25 mg)
- Subsequentely, the method has been developed at pilot scale (100 mg). The material produced has been tested and released for the Phase I clinical trials
- Then, the method has been developed at industrial scale (100 g)
- Biocomparability protocols have shown that the materials produced at lab scal, pilot scale, and industrial scale are qualitatively comparable
- Subsequently, the lots produced at industrial scale have been tested and used for the Phase II and Phase III clinical trials

Collaboration with Aérial:

Formulation and lyophilization development of MenAfriVac

Collaboration with Aérial Formulation and lyophilization development of MenAfriVac

- 1. Contract with Aérial, Illkirch, France
- Supported by PATH
- All objectives achieved
 - Vaccine stable: Free polysaccharide not more than 30% over 2 years at 2-8 degrees Celsius
 - % moisture not more than 2%
 - Acceptable cake appearance
 - Lyophilization cycle reduced, therefore increasing the lyophilization capacities of production at SIIL
 - Reconstitution time not to exceed 10 seconds
 - The conjugate material is intact based on HPLC profiles

Why the tech transfers went well

- All parties committed to the goal of the project
- All activities covered contractually
- Mutual respect among all parties
- Communication, communication and more communication...through periodic conference calls, annual review meetings
- Excellent technical staff
- Excellent document management
- Rapid decision-making process
- Strong support from the top and from the bottom

Technology transfers to Serum Institute

- Technology transfers and scientific cooperation were successful because of:
 - The support of expert consultants
 - Agreed goals shared by all partners
 - Mutual respect
 - Communication, communication and more communication...

Men A conjugate vaccine - "MenAfriVac"

Thank you The Meningitis Vaccine Project

